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ABSTRACT

The polymerase chain reaction (PCR) is widely used
for applications which require a high level of speci-
ficity and reliability, such as genetic testing, clinical
diagnostics, blood screening, forensics and biode-
fense. Great improvements to PCR performance
have been achieved by the use of Hot Start activa-
tion strategies that aim to prevent DNA polymerase
extension until more stringent, higher temperatures
are reached. Herein we present a novel Hot
Start activation approach in PCR where primers
contain one or two thermolabile, 4-oxo-1-pentyl
(OXP) phosphotriester (PTE) modification groups at
3’-terminal and 3’-penultimate internucleotide link-
ages. Studies demonstrated that the presence of
one or more OXP PTE modifications impaired DNA
polymerase primer extension at the lower tempera-
tures that exist prior to PCR amplification. Further-
more, incubation of the OXP-modified primers at
elevated temperatures was found to produce the
corresponding unmodified phosphodiester (PDE)
primer, which was then a suitable DNA polymerase
substrate. The OXP-modified primers were tested in
conventional PCR with endpoint detection, in one-
step reverse transcription (RT)–PCR and in real-time
PCR with SYBR Green I dye and Taqman� probe
detection. When OXP-modified primers were used
as substitutes for unmodified PDE primers in PCR,
significant improvement was observed in the speci-
ficity and efficiency of nucleic acid target
amplification.

INTRODUCTION

The polymerase chain reaction (PCR) is a powerful tech-
nique used to produce multiple copies of a nucleic acid

region of interest. The ‘essential reaction components’ in
a PCR cocktail include the DNA polymerase, two oligo-
nucleotide primers, deoxynucleoside 50-triphosphates
(dNTPs), magnesium ion and other buffer components
(1,2). This wide-spread technique finds utility in applica-
tions that require the amplification of a target region of
interest with high specificity and accuracy (3–8). Robust
PCR performance is of the utmost importance for high-
sensitivity analytical PCR schemes, such as detection of
single-copy DNA molecules (9), blood-borne infectious
agents (5,7), biohazardous microbes (3), defective or can-
cerous genes (4,10,11), single nucleotide polymorphisms
(10,11) and forensic samples (3,8). In addition, the need
for improved PCR performance is imperative for the pre-
paration of samples for cloning and next-generation
sequencing applications (12,13).
Although primer sequence and length can be carefully

designed to optimize its hybridization to only the intended
target sequence at the annealing temperature, PCR ampli-
fication reactions can still be plagued by off-target ampli-
fication (14). Off-target amplifications are thought to
occur during the lower temperature conditions of PCR
sample preparation and thermal cycler ramping to the
initial denaturation temperature. Under these less strin-
gent conditions, the primers, which are in a large molar
excess over target, can bind nonspecifically to regions of
the nucleic acid target with partial complementarity or to
other primer molecules (14). These nonspecific primer
complexes may initiate the synthesis of undesired
‘mis-priming’ and ‘primer dimer’ extension products,
respectively. As has been discussed by Chou et al. (14),
mis-priming can compete with amplification of the desired
target sequences, thereby significantly reducing the effi-
ciency of the amplification of the desired sequence, espe-
cially for low copy number targets. Furthermore, primer
dimers may undergo amplified oligomerization during
PCR to create a complex mixture of primer artifacts, the
quantity of which often varies inversely with the yield of
specific PCR product in low copy number amplifications.

*To whom correspondence should be addressed. Tel: +1 858 546 0004; Fax: +1 858 546 0020; Email: npaul@trilinkbiotech.com
Present address:
Gerald Zon, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404, USA

� 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



One widely used means of improving the specificity of
PCR is to employ a Hot Start activation technique. The
goal of this technique is to prevent the DNA polymerase
from premature extension of primer complexes with lesser
degrees of complementarity during the low stringency con-
ditions of pre-PCR sample preparation. In Hot Start acti-
vation, primer extension is blocked until the reaction
mixture reaches an elevated, Hot Start temperature,
where the stringency of the primer/target hybridization
is optimal for specificity, and primer complexes are disso-
ciated. As first described, a critical component of the PCR
mixture, such as magnesium chloride or DNA polymerase,
was added under high stringency conditions to a ‘hot’
sample containing all other components of the PCR cock-
tail (15). Other noteworthy approaches include the physi-
cal separation of reaction components (14,16,17), DNA
polymerase inhibition at lower temperatures (18–24), the
use of accessory proteins (25–27) and modified primer
constructs (28–36). As PCR-based applications continue
to evolve, so does the need for approaches to Hot Start
activation in PCR that allow for further improvements to
performance.
Approaches that employ modified primers for improved

PCR specificity have been diverse and have included com-
petitor sequences (33,37), primers with secondary struc-
ture (28,31), modifications that improve hybridization
selectivity (32,35), 30-modifications that block primer
extension until 30–50 exonuclease removal (29,34) and
nucleobase blocking modifications that are removable by
UV irradiation (36) or by thermal deprotection (30). While
each of these approaches has demonstrated remarkable
reductions in off-target product formation, limitations
have included the lack of generality in the approach as
well as the requirement for additional enzymes, special
activation conditions, specific nucleoside modifications
or longer and structurally complicated primers. With
these considerations in mind, we sought to develop a
novel primer modification that can be introduced into
any oligonucleotide sequence and that can allow for
primer-based Hot Start activation without any additional
special conditions. Phosphotriester (PTE) oligonucleotide
derivatives (38–42), members of P-modified oligonu-
cleotide class (43–45), were considered for this approach
as the most ‘activated’ phosphoester bond in the PTE
fragment can be preferentially cleaved to produce oligo-
nucleotides containing a natural phosphodiester (PDE)
linkage (46–67). While earlier approaches used chemical
treatment for removal, several new PTE-protecting groups
have recently been described that can be introduced using
solid-phase oligonucleotide synthesis, with removal at
elevated temperature to generate the corresponding unmo-
dified PDE oligonucleotide (68–75). The identification
of temperature-sensitive PTE derivatives, combined with
literature evidence that the presence of PTE primer mod-
ifications blocks DNA polymerase primer extension
(76–78), showed great promise for utility in a Hot Start
PCR approach.
Herein we will describe the design, synthesis and evalua-

tion of modified oligonucleotide primers that contain one
or two internucleotide PTE linkages at the 30-terminus of
the primer. Proof of principle studies showed significant

promise for the 4-oxo-1-pentyl (OXP) group, as it dis-
played the desired characteristics of reduced elongation
at low temperatures and rapid conversion to an extend-
able primer at elevated temperatures, without being too
unstable for routine handling (74). We therefore sought to
further explore these OXP-modified primers in a number
of problematic PCR-based primer/template systems.
These experiments will include investigation of primers
that are prone to primer dimer formation and mis-priming
using endpoint analysis and real-time measurements.
Additional experiments will evaluate the detection of low
copy number templates and the detection of RNA tem-
plates using a one-step reverse transcriptase PCR
approach.

MATERIALS AND METHODS

Materials

The chemicals used in this study were commercially avail-
able through Acros (Geel, Belgium), Fisher Scientific
(Pittsburgh, PA, USA), Sigma-Aldrich (St. Louis, MO,
USA), or ChemGenes (Wilmington, MA USA). All oli-
gonucleotide synthesis reagents were obtained from Glen
Research Corporation (Sterling, VA, USA). Unmodified
gene-specific PCR primers, unmodified poly-dT18 primers
and probes were ordered through TriLink
BioTechnologies, Inc. Synthesis of modified phosphorami-
dites is described in the Supplementary Data section.
Primers which contained either one PTE modification to
the 30-terminal internucleotide linkage or two modifica-
tions to the 30-terminal and penultimate internucleotide
linkages were also prepared by TriLink, on an ABI
Expedite 8909 DNA synthesizer using standard
manufacturer-suggested procedures as detailed in the Sup-
plementary Data section. HPLC was accomplished on
a Beckman, Inc. (Fullerton, CA, USA) System Gold
Nouveau Model 126 with Model 168 photodiode array
detector. NMR spectra were recorded on Bruker Model
AX 500 spectrometer (NuMega, San Diego, CA, USA).
Electrospray mass spectrometry analyses were done by
HT Laboratories (San Diego, CA, USA).

Bacteriophage � genomic DNA was purchased from
Roche Applied Science (Indianapolis, IN, USA), HIV-1
genomic DNA was a component of the Gene Amplimer
kit purchased from Applied Biosystems (Foster City, CA,
USA), and Human genomic DNA was purchased from
Promega (Fitchburg, WI, USA). Thermus aquaticus
(Taq) DNA polymerase (recombinant) and Platinum�

Taq DNA Polymerases were purchased from Invitrogen
(Carlsbad, CA, USA). DyNAzymeTM II Hot Start DNA
polymerase and the deoxynucleotide solution set (dNTPs)
were purchased from New England Biolabs (Ipswich, MA,
USA). AmpliTaq Gold� DNA Polymerase was purchased
from Applied Biosystems and HotStart-IT� Taq DNA
polymerase was purchased from USB (Cleveland, OH,
USA). SYBR Green� I nucleic acid stain was purchased
from Invitrogen and passive reference ROX dye (1mM)
was purchased from Stratagene (La Jolla, CA, USA).
Human Liver Total RNA was purchased from Clontech
(Mountain View, CA, USA), RNase Inhibitor was
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purchased from Ambion (Austin, TX, USA) and Moloney
Murine Leukemia Virus Reverse Transcriptase (M-MLV
RT) was purchased from Invitrogen. All endpoint PCR
experiments were performed on either a Perkin Elmer
GeneAmp� 9600 or a Perkin Elmer GeneAmp� 2400 ther-
mal cycler. All real-time PCR experiments were performed
using a Stratagene Mx3005P� QPCR System instrument.

Study of kinetics of conversion of OXP-modified
oligonucleotides to corresponding PDE oligonucleotides
in PCR buffer

Twenty-eight microliters of OXP-modified oligonucleotide
solution (50 mM) was mixed with 532ml of water and
140 ml of 5� PCR buffer [250mM KCl, 7.5mM MgCl2,
50mM Tris (pH 8.4 at 258C)] and aliquots of 95 ml each
were placed in thin-walled 200 ml PCR tubes. One control
tube was placed on dry ice immediately while other tubes
were placed in GeneAmp 2400 PCR Thermal Cycler run-
ning at 958C. At a specified time, the tube was removed
and frozen on dry ice. Each sample was diluted with 105 ml
of water and analyzed by reverse-phase HPLC on Waters
(Milford, MA, USA) Micro-Bondapak C18 10 m analytical
column (3.9� 30mm) using a gradient of acetonitrile
(Buffer B) in 100mM TEAA (pH 7.5; Buffer A). The gra-
dient was 0–50% of Buffer B over 40min, 1ml/min. On the
resultant chromatogram, the HPLC peaks corresponding
to OXP-modified oligonucleotide and unmodified PDE
oligonucleotide were integrated at 260 nm wavelength.

Estimation of the number of PDE primer molecules
generated from anOXP primer during typical PCR
amplification

The estimation is based on kinetic data (Figure 3). Since
the PCR is not an isothermal process, the following cal-
culations are considered to be an approximation. A typical
amount of DNA target introduced into a PCR experiment
is 101–103 copies. The upper theoretical limit of amplicon
molecules produced during PCR would be: 104–106 molec-
ules after 10 cycles; 107–109 molecules after 20 cycles;
1010–1012 molecules after 30 cycles; and 1013–1015 molec-
ules after 40 cycles. A typical initial concentration of the
primers in the PCR reaction mixture is 0.1–1.0 mM, and
the reaction volume is 20–50ml. That is equal to 2–50 pmol
or 1.2� 1012 to 3.0� 1013 molecules of each primer.

If the initial amount of OXP primer would be 5� 1012

molecules and pre-PCR denaturation step at 958C is set
for 60 s, 4� 1011 PDE primer molecules would be gener-
ated from an OXP primer before the first PCR cycle.
Note, that the number of generated PDE primer molecules
is 4� 108 to 1010 times more than the initial number of
target DNA molecules and is sufficient to support PCR for
�30 cycles of amplification. Assuming that each subse-
quent PCR cycle is equivalent to �60 s of an additional
incubation at 958C, then after 30 PCR cycles there will be
�1013 PDE primer molecules produced. This amount is
enough to support PCR amplification up to 35 cycles.
Since a practical number of the amplicon molecules pro-
duced in typical amplification in PCR is limited to a factor
1010–1012 (1,2), the number of PDE primer molecules

generated after 35 cycles (�1013) will be sufficient for
most PCR applications.

Primer extension experiments

Primer extension with Klenow fragment of DNA
polymerase. Primer extension experiments using large
fragment (Klenow) of DNA polymerase I (New England
Biolabs) were performed at 258C using the HIV-1 tat
reverse primer (50-AATACTATGGTCCACACAACTAT
TGCT-30) that was unmodified or contained a single OXP
modification. For each primer, a 30 ml mixture was pre-
pared, which contained the primer at 5 mM in NEBuffer 2
(50mMNaCl, 10mMMgCl2, 1mM dithiothreitol, 10mM
Tris–HCl, pH 7.9 at 258C). Each mixture was split into
two thin-walled 200ml PCR tubes (15ml each) and covered
with a drop of mineral oil. The first tube of each pair was
stored at 48C for 45min (‘no heat pretreatment’), while the
second tube of each pair was incubated at 958C for 40min
(‘with heat pretreatment’), followed by 48C for 5min using
a GeneAmp 2400 PCR Thermal Cycler (Perkin Elmer,
Waltham, MA, USA). From each of these four tubes,
14 ml was transferred to four fresh tubes that contained a
54.6ml reaction mixture comprised of NEBuffer 2 (50mM
NaCl, 10mM MgCl2, 1mM dithiothreitol, 10mM Tris–
HCl, pH 7.9 at 258C), 256 mM dNTPs and 1.9 mM of tem-
plate oligonucleotide 1 (50-AATCTTAGCAATAGTTG
TGTGGACCATAGTATTTTTTTTT-30). The resultant
mixture was allowed to stay at 258C for 5min and a
9.8ml aliquot was removed as a ‘zero time point’ and
quenched on dry ice with 10.2 ml of Novex� TBE-Urea
Sample Buffer (2�; Invitrogen). To start the reaction,
1.2ml of a 0.5 U/ml dilution of DNA polymerase was
added and resultant mixture was incubated at 258C,
removing 10 ml aliquots and quenching with 10 ml of
Novex� TBE-Urea Sample Buffer (2�) on dry ice at
time 2min, 5min, 13min, 32min and 80min (PAGE ana-
lysis: Figure 4A and B).

Primer extension with Taq DNA polymerase. Primer
extension experiments using recombinant Taq DNA poly-
merase (Invitrogen) were performed at 258C using
the OXP-modified forward primer and control PDE for-
ward primer (50-GAATTGGGTGTCAACATAGCAG
AAT-30). For each primer, a 30 ml mixture was prepared,
which contained the primer at 5 mM and 1�PCR buffer
[50mM KCl, 2.5mM MgCl2, 10mM Tris (pH 8.4 at
258C)]. Each mixture was split into two thin-walled
200 ml PCR tubes and covered with mineral oil. The first
tube of each pair was stored at 48C for 45min (‘no heat
pretreatment’), while the second tube was stored at 958C
for 40min (‘with heat pretreatment’), followed by 48C for
5min. From each of these four tubes, 10 ml was transferred
to four fresh tubes that contained a 40 ml reaction mixture
comprised of 1� PCR buffer, 253 mM dNTPs, 1.9 mM tem-
plate oligonucleotide (50-TAATGCCTATTCTGCTA
TGTTGGCACCCAATTCTTTTTTT-30), and 80 U of
Taq polymerase. The reaction started upon addition of
the pretreated primer at 258C. At determined time inter-
vals, 10 ml aliquots were removed and quenched with 10 ml
of Novex� TBE-Urea Sample Buffer (2�) on dry ice at
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time 15min, 25min, 60min and 125min (PAGE analysis
shown for 15min time point only, Figure 4C).

PAGE analysis of extension products. Aliquots (5 ml) of
each quenched sample were analyzed on a 10% TBE-
Urea Gels (1.0mm, 15 wells, Invitrogen), using 1� TBE
running buffer which had been prewarmed to 808C. The
bromophenol blue dye was run to the bottom of the gel,
and the gel was stained with SYBR� Gold Nucleic Acid
Gel Stain (Invitrogen) according to the manufacturer’s
recommendations. An image of the stained gel was
acquired using UV transillumination with an Alpha
Innotech Corporation (San Leandro, CA, USA) Multi
Image Light Cabinet with CCD Camera and quantified
using AlphaEaseFCTM software.

Endpoint PCR experiments

Endpoint PCR protocols were set up by combining the
following components in a single, thin-walled 200 ml
tube. All Taq DNA polymerase reactions contained
1� PCR buffer [20mM Tris (pH 8.4), 50mM KCl,
2.5mM MgCl2], 0.2mM dNTPs and 1.25U Taq DNA
polymerase, recombinant, in a 50 ml reaction volume.
Reactions that amplified a 365-bp fragment of the tat
gene from HIV genomic DNA typically included 0.5 mM
forward and reverse primers (50-GAATTGGGTGTCAA
CATAGCAGAAT-30 and 50-AATACTATGGTCCA
CACAACTATTGCT-30) and 0, 1, 5, 25 or 125 copies of
HIV recombinant DNA (as standardized from the Gene
Amplimer kit), with 10 ng of human genomic DNA as a
carrier. The primers employed for these studies were either
unmodified, single OXP-modified, single MAF-modified
or double OXP-modified. Unless otherwise stated, thermal
cycling conditions were 948C for 10min denaturation step,
followed by 30 PCR cycles at 948C for 30 s, 568C for 30 s,
728C for 1min and final extension at 728C for 7min.
Reactions that amplified a 653-bp region of the �-actin
gene from human genomic DNA included 0.1 mM forward
and reverse primers (50-AGAGATGGCCACGGCT
GCTT-30 and 50-ATTTGCGGTGGACGATGGAG-30)
and 0 ng, 0.1 ng, 1 ng, 10 ng or 100 ng of Human genomic
DNA. The primers employed for these studies were either
unmodified or double OXP-modified. Thermal cycling
conditions were 948C for 2min denaturation step, fol-
lowed by 35 PCR cycles at 948C for 30 s, 608C for 30 s,
728C for 45 s and final extension at 728C for 7min.
Endpoint PCR protocols that evaluated other Hot Start

DNA polymerases all employed 1.25U of DNA polymer-
ase, five copies of HIV recombinant DNA (as standar-
dized from the Gene Amplimer kit), 10 ng of human
genomic DNA as a carrier, 0.2mM dNTPs, in a 50 ml
reaction volume. In each reaction, a 365-bp fragment of
the tat gene from HIV recombinant DNA was amplified
by included 0.5 mM forward and reverse primers (50-G
AATTGGGTGTCAACATAGCAGAAT-30 and 50-AAT
ACTATGGTCCACACAACTATTGCT-30) that were
either unmodified, single OXP-modified or double OXP-
modified. Reactions containing Platinum� Taq DNA
Polymerase employed the same 1� PCR buffer as was
employed for Taq DNA polymerase [20mM Tris

(pH 8.4), 50mM KCl, 2.5mM MgCl2]. The 1� buffer
for reactions with DyNAzymeTM II Hot Start DNA poly-
merase included 15mM Tris–HCl (pH 8.2), 30mM KCl,
5mM (NH4)2SO4, 2.5mM MgCl2 and 0.02% BSA.
Reactions employing AmpliTaq Gold� DNA
Polymerase employed 1� Buffer II [50mM KCl and
10mM Tris–HCl (pH 8.3) and 2.5mM MgCl2]. The
buffer for HotStart-IT� Taq DNA polymerase included
10mM Tris–HCl (pH 8.6), 50mM KCl and 1.5mM
MgCl2. The thermal cycling protocol employed was the
same as above: 948C for 10min denaturation step, fol-
lowed by 35 PCR cycles (948C for 40 s, 568C for 30 s
and 728C for 60 s) and a final extension at 728C for 7min.

Endpoint PCR experiments were performed on either a
GeneAmp 2400 or a GeneAmp 9600 PCR Thermal
Cycler. After PCR, 20 ml of each sample was loaded on
4% agarose E-gel cartridge (Invitrogen) and run for
25min according to the manufacturer’s suggested proto-
col. An image of the gel was acquired using UV transillu-
mination with an Alpha Innotech Corporation Multi
Image Light Cabinet with CCD Camera and quantified
using AlphaEaseFCTM software.

Real-time PCR experiments, with SYBR green detection

A quantitative real-time protocol was used in which the
components were combined in a single, thin-walled 200 ml
tube. Reaction conditions were 1� PCR buffer [20mM
Tris (pH 8.4), 50mM KCl and 2.5mM MgCl2], 0.5mM
gene-specific PCR primers (50-GAATTGGGTGT
CAACATAGCAGAAT-30 and 50-AATACTATGGTCC
ACACAACTATTGCT-30), 0.2mM dNTPs, 0.15�
SYBR Green� I nucleic acid stain, 30 nM passive refer-
ence ROX dye, 0, 1, 5, 25 or 125 copies of HIV recombi-
nant DNA (as standardized from the Gene Amplimer kit),
10 ng of human genomic DNA and 1.25U Taq DNA
polymerase (recombinant), in a 25 ml reaction volume.
Thermal cycling conditions were 958C for a 10min dena-
turation step, followed by 40 PCR cycles (958C for 40 s,
568C for 30 s and 728C for 1min). The primers employed
for these studies were either unmodified, single OXP-
modified or double OXP-modified. Each template concen-
tration was set up in quadruplicate, and reactions were
performed in a Stratagene Mx3005P� QPCR System
instrument.

Real-time PCR experiments, with TaqMan� probe detection

A quantitative real-time protocol was used in which the
components were combined in a single, thin-walled 200 ml
tube. Reaction conditions included 1� PCR buffer
[20mM Tris (pH 8.4), 50mM KCl and 2.5mM MgCl2],
0.2mM dNTPs, and 30 nM passive reference ROX dye,
and 1.25U Taq DNA polymerase (recombinant) in a 25 ml
reaction volume. The 533-bp region of the DNA
packaging protein of enterobacteria phage � was amplified
with 0.5 mM gene-specific PCR primers (50-CAGGAG
CTGGACTTTACTGATGC-30 and 50-CGGGATATCG
ACATTTCTGCACC-30), 0.1mM TaqMan� probe (50-
6-FAM-TCTGTTCATCGTCGTGGCGGCCCA-BHQ1-
30) and 0, 10, 50, 100, 500, 1000, 5000 and 10 000 copies of
� genomic DNA. Thermal cycling conditions were 958C
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for 10min denaturation step, followed by 40 PCR cycles
at 958C for 40 s, 568C for 30 s and 728C for 2min. The
primers employed for these studies were either unmodified
or double OXP-modified. For each primer/template
target, each template concentration was set up in quadru-
plicate, and reactions were performed in a Stratagene
Mx3005P� QPCR System instrument.

One-step reverse transcription–PCR

A one-step reverse transcription (RT)–PCR protocol was
used in which the components were combined in a single
tube. Reaction conditions were 1� PCR buffer [20mM
Tris (pH 8.4), 50mM KCl and 1.5mM MgCl2), gene-
specific PCR primers (0.5 mM), poly-dT18 primer (1 mM),
0.16mM dNTPs, 0.25 mg of Human Liver Total RNA,
10U RNase Inhibitor, 25U M-MLV RT and 0.3U Taq
DNA polymerase (recombinant) in a 25 ml reaction
volume. Thermal cycling conditions were 428C for
30min (RT step), 958C for 10min inactivation and dena-
turation step, followed by 30 PCR cycles at 958C for 30 s,
608C for 30 s, 728C for 30 s and final extension at 728C for
5min. Gene-specific PCR primers for the PBGD, ABCA1
and �-actin genes (79,80) were prepared as unmodified,
single OXP-modified and double OXP-modified. In partic-
ular, the PCR primer sequences for the 205-bp
PBGD amplicon (50-GAGTGATTCGCGTGGGTACC-
30 and 50-GGCTCCGATGGTGAAGCC-30), the 264-bp
ABCA1 amplicon (50-GCACTGAGGAAGATGCTGAA
A-30 and 50-AGTTCCTGGAAGGTCTTGTTCAC-30)
and the 446-bp �-actin amplicon (50-AGAGATGGCCA
CGGCTGCTT-30 and 50-ATTTGCGGTGGACGATGG
AG-30) were prepared. One-step RT–PCR experiments
were performed on either a GeneAmp 2400 or a
GeneAmp 9600 PCR Thermal Cycler. After PCR, 20 ml
of each sample was loaded on 4% agarose E-gel cartridge
(Invitrogen) and run for 25min according to the manufac-
turer’s suggested protocol. An image of the gel was
acquired using UV transillumination with an Alpha
Innotech Corporation Multi Image Light Cabinet with
CCD Camera and quantified using AlphaEaseFCTM

software.

RESULTS

In these studies, thermolabile PTE primer modifications
were evaluated for their ability to improve the perfor-
mance of problematic PCR systems. Experiments com-
pared the performance of unmodified PDE primers to
primers containing either one or two PTE primer modifi-
cations at the 30-terminal and/or penultimate PDE lin-
kage(s). These modifications were evaluated for their
ability to reduce off-target amplifications by providing a
Hot Start activation step to PCR (Figure 1A). Herein, we
will investigate whether the presence of one or more PTE
modifications will significantly reduce DNA polymerase-
mediated primer extension at the lower, less stringent tem-
peratures during the reaction set-up process, while allow-
ing for efficient ‘Hot Start’ activation at elevated
temperature by conversion to the corresponding unmodi-
fied primer. Further studies on the leading PTE-modified

primers will evaluate several primer/template systems
prone to primer dimer formation and mis-priming, with
endpoint or real-time detection.

Synthesis of OXP andMAF phosphoramidites and
modified primers

To test the hypothesis that PTE-modified oligonucleotides
can be converted to the corresponding unmodified PDE
oligonucleotides at elevated temperatures in PCR buffer,
two candidate thermolabile PTE modification groups
were identified from a systematic analysis of published
data: OXP and 2-(N-formyl-N-methyl)aminoethyl
(MAF) (Figure 1B) (46–75). Details of synthesis of the
OXP- and MAF-modified 20-deoxynucleoside 30-phos-
phoramidites of dA, dG, dC and dT are described in
Supplementary Data section. The phenoxyacetyl group
was used for protection of the exocyclic amino group of
dA, dC and dG. The 50-DMT-protected OXP-modified
nucleoside 30-phosphoramidites were isolated by silica
gel chromatography in 50–70% overall yields. These phos-
phoramidites were stable for a week as 0.1M acetonitrile
solutions and were shown to be as stable as any conven-
tional nucleoside phosphoramidite at �208C or �708C.
A similar route was used to prepare MAF-modified
30-phosphoramidites. Although faster deprotecting PTE
groups, such as 3-(N-tert-butylcarboxamido)-1-propyl
(TBCA) and 4-methylthio-1-butyl (MTB) (72,75) were
examined, their low stability during preparation and
isolation limited their development.
Several pairs of forward and reverse primers with OXP

and MAF modifications as well as the corresponding con-
trol PDE primers were synthesized. The modified primer
pairs each contained either a single OXP or a single MAF
PTE group at the last 30-internucleotide linkage of primer.
Other primer pairs contained double OXP modifications,
with two consecutive OXP groups at terminal and penul-
timate 30-internucleotide linkages of the primer. The incor-
poration of PTE group in the primer results in a new
chiral center and leads to the formation of diastereomers.
From HPLC analysis it was evident that diastereomeric
forms of single OXP-modified primers (and MAF primers,
not shown) are separable at conditions used, while those
for double OXP-modified primers were not (Figure 2).
The isolated and desalted PTE primers were shown to
be stable for at least 6 months when kept as a frozen
solution at �208C. Subsequent studies have shown that
they are stable for over a year in DMSO at �208C (data
not shown).

Kinetics of conversion of PTE primers to PDE primers

Using HPLC analysis, the kinetics of conversion of single
OXP-modified primers to the corresponding unmodified
PDE primers was investigated at 958C in PCR buffer
(pH 8.4 at 258C). A 40-min incubation resulted in nearly
complete conversion of OXP-modified primer to PDE
primer (Figure 3A). The half-conversion time was deter-
mined to be 8.5� 1.5min, with no significant difference
in rate for both diastereomeric forms of the OXP
primer. Detailed analysis of the kinetics for both reverse
and forward HIV-1 primers revealed that OXP to PDE
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conversion follows a first (or pseudo-first)-order process
with a rate constant K=(1.4� 0.1)� 10�3 s–1 (Figure 3A
and B). The observed first-order kinetics is consistent with
the intramolecular fragmentation mechanism proposed by
Beaucage and coworkers (74).
The kinetics of conversion of the double OXP-modified

primer to the corresponding unmodified PDE primer is
more complicated (Supplementary Scheme 3, Figures 2B
and 3C), as it requires two sequential OXP-modification
removal steps. When the first OXP modification is

removed from a double OXP-modified primer, two iso-
meric forms of a single OXP-modified primer can be
formed as intermediates—one has a single OXP modifica-
tion at the 30-terminal internucleotide linkage modifica-
tion, while the other has a single OXP modification at
the 30-penultimate internucleotide position. Both of these
intermediates convert to unmodified PDE primer in a
second OXP removal step. HPLC analysis of the mixture
at an intermediate stage indicated the presence of all four
compounds (unmodified, two single OXP-modified
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modification group. (B) PTE modifications examined in these studies.
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isomers and double OXP-modified), with partial separa-
tion of respective diastereomers (Figure 2B). Due to the
more complicated route, the rate of formation of PDE
primer from double OXP-modified primer was delayed
compared to the conversion rate of single OXP-modified
primer to PDE primer. Incubation at 958C for 1–1.5 h
(t½= �15min) was needed to completely convert the
double OXP-modified primer to PDE primer. The for-
ward and reverse primers with a single MAF modification
at the 30-terminal internucleotide linkage were also tested
for conversion to corresponding PDE primers and found
to have a half time of �20min in PCR buffer at 958C.

Extension of PTE primers by DNA polymerases

The ability of Klenow fragment of DNA polymerase I and
Taq DNA polymerase to perform template-dependent
extension and elongation of the HIV-1 single OXP-
modified primers was investigated. Due to the possibility
of spontaneous conversion of OXP primers into the corre-
sponding PDE primers at elevated temperatures, all elon-
gations were performed at room temperature. Under these
reaction conditions, it was found that a standard PDE
primer can be elongated to a full-length extension product,
while the corresponding OXP primer was poorly extend-
able by Klenow fragment of DNA polymerase I
(Figure 4A). The appearance of a small amount of trun-
cated extension product for the OXP primer may be attrib-
uted to a selective (although inefficient) single-nucleotide
extension of one of the two diastereomeric forms of OXP
primer that were present in the mixture. After partial
extension to an (n+1) product, no further primer exten-
sion was observed. When the OXP-modified primer was

converted to the PDE primer by heating at 958C for
40min, primer extension was no longer hindered by the
presence of the OXP group and its extension became
equal to that of a control PDE primer (Figure 4B). As
anticipated, the unheated OXP-modified primer was
found to migrate on a gel more slowly than the correspond-
ing PDE primer and heat-deprotected OXP primer.
Although the detailed extension experiments were per-

formed with the mesophilic Klenow fragment of DNA
polymerase I, similar results were obtained with the ther-
mophilic Taq DNA polymerase suitable for PCR
(Figure 4C). To accommodate for the slower

PDE

0 5 10 15 20 25 Time, min 

A

B PDE

1 × OXP

2 × OXP

Figure 2. Conversion of OXP-modified primers to the corresponding
PDE primer. (A) Reverse phase HPLC analysis of a single OXP-
modified primer after 5min incubation at 958C in 50mM KCl,
1.5mM MgCl2 and 10mM Tris (pH 8.4 at 258C). (B) Reverse phase
HPLC analysis of the double OXP-modified primer after 8min incuba-
tion at 958C in 50mM KCl, 1.5mM MgCl2 and 10mM Tris (pH 8.4 at
258C). Peaks which are due to primers containing a single OXP mod-
ification are labeled 1� OXP, while peaks with two OXP modifications
are labeled 2� OXP.
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Figure 3. Evaluation of the rate of unmodified primer formation after
incubation of OXP-modified HIV-1 primers at elevated temperatures.
(A) Kinetic curves of conversion of forward (filled circle) and reverse
(filled square) single OXP-modified primers to corresponding PDE pri-
mers at 958C in 1� PCR buffer (see, Figure 2). (B) A semi-logarithmic
plot of kinetics of conversion of forward (open circle) and reverse (open
square) single OXP-modified primers to a corresponding PDE primer
at 958C in 1� PCR buffer (see, Figure 2). (C) Kinetic curves of con-
version of a double OXP-modified forward primer to the corresponding
PDE primer in 1� PCR buffer at 958C (see, Supplementary Scheme 3).
Starting double OXP-modified primer (filled circle); intermediate iso-
meric single OXP-modified primers (filled square); and unmodified
PDE primer (filled triangle) are indicated with the appropriate symbols.
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polymerization efficacy of Taq DNA polymerase at room
temperature, we used a �60-fold higher concentration of
the polymerase compared to the standard PCR condi-
tions. Nevertheless, no extension of the primer to a full-
length product was observed unless the OXP primer was
preheated at 958C for 40min.
The double OXP-modified primers were also tested in

the same DNA polymerase-mediated primer extension
reactions. Incubation of double modified OXP forward
primer with Klenow fragment of DNA polymerase I at
conditions identical to those in Figure 4 showed no detect-
able primer extension. As was the case with the single
OXP-modified primer, when double OXP-modified
primer was preincubated in PCR buffer at 958C for
40min, the extension reaction resulted in predominant
formation of full-length extension product, as was seen
for the control PDE primer (data not shown).

Performance of single PTE-modified primers in HIV-1
PCR system that is prone to primer dimer formation—
comparison of OXP andMAF

A well-characterized amplification system described by
Chou et al. (14) to be prone to primer dimer formation
was selected to test the utility of single PTE-modified
primers. We first compared the performance of unmodi-
fied primers, single OXP-modified primers and single
MAF-modified primers by performing 40 cycles of PCR
in the presence or absence of five copies of HIV-1 recom-
binant DNA template (Figure 5). Agarose gel analysis of
the resultant amplification products revealed that the pres-
ence of PTE modifications significantly improved reaction
performance by reducing the amount of primer dimer for-
mation. Furthermore, data indicated a comparable but
slightly better performance for OXP primers compared
to MAF primers. Under the conditions used, the ratios
of amplicon to primer dimer formed were found to be
5.6 (PDE primers), 22.8 (OXP primers) and 13.5 (MAF
primers) after 40 PCR cycles. Therefore, the OXP primer
modification was identified as the lead modification for
further investigation.

To explore the effect of the OXP group on primer dimer
formation, PCR conditions that generate a high yield of
primer dimer in the absence of template were evaluated.
For the HIV-1 single OXP-modified primer pair, a primer
concentration of 4.5 mM, approximately 5- to 20-fold
higher than in a typical PCR procedure (Figure 6), was
chosen, since robust primer dimer formation occurred
with unmodified PDE primers. In these studies, the OXP
primers were preincubated at 958C for increasing the time
intervals in order to prepare mixtures containing different
proportions of PTE and PDE primers under simulated
PCR conditions. The preheated mixtures were cooled
and employed in the subsequent PCR experiment using
Taq DNA polymerase. When the OXP primer did not
undergo any preheating, only a small amount of primer
dimer was observed after 30 cycles of PCR amplification
(Figure 6, lane 2). This observation was consistent with a
small level (<1%) of contamination of the starting OXP
primers with PDE primers. As the length of preheating of
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Figure 4. PAGE analysis of primer extension experiments with single
OXP-modified and PDE primers. Primer extension with Klenow frag-
ment of DNA polymerase I of nonheated (A) and preheated (B) single
OXP-modified reverse primer, respectively along template 2. The exten-
sion reactions were incubated at 258C for the indicated times after
which the reaction mixtures were quenched and analyzed. (C) Primer
extension with Taq DNA polymerase of PDE and OXP forward prim-
ers (nonheated control and preheated sample) along template oligonu-
cleotide 1. Extension reactions were incubated at 258C for 15min, after
which the aliquots from reaction mixtures were quenched and analyzed.
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Unmodified

Figure 5. Agarose gel analysis of PCR amplification of 365-bp frag-
ment of HIV-1 DNA template using PDE, OXP and MAF primer sets
at concentration of 0.5 mM, volume of 25 ml. Lanes 1–4 contain unmo-
dified PDE primers, where lanes 1 and 2 are nontemplate control
(NTC) and lanes 3 and 4 have five copies of HIV-1 recombinant
DNA. Lanes 5–8 contain single OXP-modified primers, where lanes 5
and 6 are NTC and lanes 7 and 8 have five copies of HIV-1 recombi-
nant DNA. Lanes 9–12 contain single MAF-modified primers, where
lanes 9 and 10 are NTC and lanes 11 and 12 have five copies of HIV-1
recombinant DNA. The 50-bp ladder is loaded after lanes 4, 8 and 12.
Thermal cycling parameters: 958C (10min), 40 cycles of [958C (40 s),
568C (30 s) and 728C (2min)].
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OXP primer at 958C was increased, a corresponding
increase in the amount of the primer dimer accumulated
in PCR was observed (Figure 6, lanes 3–6). For preheating
times of 0–40min, the yield of primer dimer was propor-
tional to the time of the preheating, and it correlated with
the kinetics of conversion of the OXP primers to the PDE
primers at 958C (Figure 3). However, when the OXP prim-
ers underwent an extensive preheating treatment
(Figure 6; 80min and 150min, lanes 7 and 8, respectively),
the yield of the primer dimer decreased. This was likely a
consequence of possible primer degradation by depurina-
tion at high temperatures (81). Overall, in the absence of
primer preheating, the accumulation of primer dimer in
nontemplate PCR system was very low with the use of
OXP primers and shows promise for use in PCR.

Evaluation of the effect of multiple thermolabile OXP
primer modifications in a primer/template system that is
prone to primer dimer formation

Since a comparison of different PTE modification groups
revealed that the single OXP-modified primers showed
great promise as the lead modification for improved PCR
performance, further studies were conducted in which the
effect of two OXP modifications on PCR performance was
ascertained. Unmodified, single OXP-modified and double
OXP-modified PCR primers were evaluated for their abil-
ity to amplify a 365-bp fragment of the HIV-1 tat gene (14).
In all PCR experiments, reactions containing 0, 1, 5, 25 or
125 copies of HIV-1 recombinant DNA were amplified by
Taq DNA polymerase, with analysis by agarose gel elec-
trophoresis or real-time PCR.

In the first experiment (Figure 7), 35 thermal cycles of
amplification were performed, where the amount of prod-
uct and primer dimer formed for four different amounts of
input template was analyzed by agarose gel electrophor-
esis. When unmodified primers were employed, primer
dimers were found to form efficiently over the entire

range of template amounts. Furthermore, a double ampli-
con band was discovered when using unmodified primers.
This is most likely due to the formation of the 405-bp mis-
priming product, as described for this primer/template
system by Chou et al. (14). When a single OXP PTE mod-
ification was introduced onto the 30-terminal internucleo-
tide linkage of each primer, a significant improvement in
PCR performance was observed. In particular, a consider-
able drop in primer dimer formation was evident, with a
corresponding increase in amplicon formation relative to
reactions employing unmodified primers. Furthermore,
formation of the double amplicon band was not observed.
When two OXP PTE primer modifications were intro-
duced, successful amplicon formation was evident, with
no detectable presence of primer dimer or other off-
target amplification products. Although the reaction spe-
cificity is significantly improved, a decrease in amplicon
yield in comparison to the single OXP-modified primers
was observed. This is likely due to the slower rate of for-
mation of PDE primer from the double OXP-modified
primers, which may result in decreased availability of
viable (unmodified) primer during PCR, thereby lowering
the efficiency of amplicon formation. This reduction in
yield was not sustained when thermal cycling was
increased to 40 cycles, as the final yield in amplicon for-
mation was equivalent to that of the single OXP-modified
primers (see Supplementary Figure S1).
In the second set of endpoint PCR experiments, the

performance of primers containing one or two OXP
PTE modifications was compared to other Hot Start
DNA polymerases for their ability to amplify a 365-bp
fragment of the tat gene of HIV-1 recombinant DNA.
Thirty-five thermal cycles of amplification were per-
formed, where the amount of product and primer dimer
formed for reactions containing five copies of input tem-
plate and 1.25U of DNA polymerase was analyzed by
agarose gel electrophoresis (Figure 8A). Reactions con-
taining single and double OXP-modified primers were
amplified using Taq DNA polymerase. Reactions contain-
ing unmodified primers were amplified by Taq DNA poly-
merase or one of the following commercially available Hot

Time (min) 0 5 10 20 40 80 150

primer 

dimer

Figure 6. Dependence of pre-PCR heating of PTE on primer dimer
accumulation. Agarose gel analysis of primer dimer accumulation
with preheated single OXP-modified primers in nontemplate system.
Mixture of both primers was preheated at 958C in 1� PCR buffer
(pH 8.4 at 258C) for increasing amounts of time. Samples were
cooled on ice water, the Taq DNA polymerase was added followed
by PCR amplification. PCR cycle parameters: 958C (2min); 30 cycles
of [958C (40 s); 568C (30 s); and 728C (2min)]; 728C (7min). Primer
dimer amplicon, indicated on the gel image, ran as a 50–80 bp DNA
fragment (left lane: 50-bp ladder).
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Unmodified Single-OXP Double-OXP

Figure 7. Agarose gel analysis of the PCR products resulting from the
amplification of a 365-bp fragment from the HIV-1 tat gene using
0.5 mM unmodified, single OXP-modified and double OXP-modified
primers. Reactions contained 10 ng of human genomic DNA and 0,
1, 5, 25 or 125 copies of HIV recombinant DNA as calibrated from
the Gene Amplimer kit.
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Start DNA polymerases: Platinum� Taq DNA Poly-
merase, AmpliTaq Gold� DNA Polymerase, HotStart-
ITTM Taq DNA Polymerase and DyNazyme TM II Hot
Start DNA polymerase. For all Hot Start technologies
evaluated, each was able to suppress primer dimer forma-
tion, with the only reaction that formed detectable
amounts of primer dimer was the one containing unmodi-
fied primers and TaqDNA polymerase. To determine how
significant the observed variations in amplicon yield for
each of the examined Hot Start technologies were, the
amplicon density for three independent experiments was
averaged and plotted in a bar graph, with all results nor-
malized to single OXP-modified primers plus Taq DNA
polymerase (Figure 8B). Reactions containing single

OXP-modified and double OXP-modified primers
formed high-amplicon yields. The reactions containing
Platinum� Taq DNA Polymerase formed comparable
yields to that of unmodified primers plus Taq or DyNa-
zymeTM II Hot Start DNA polymerase, with reactions
containing AmpliTaq Gold� DNA Polymerase and Hot-
Start-ITTM Taq DNA polymerase presented the lowest
yields. In summary, all Hot Start approaches provided
adequate suppression of primer dimer formation, with
amplicon yields varying by a factor of two. The most
robust amplicon formation was evident for single and
double OXP-modified primers.

In the third set of experiments, unmodified, single OXP-
modified and double OXP-modified primers were evalu-
ated in real-time PCR, with detection by the commonly
employed intercalating dye, SYBR Green�. The nonspe-
cific binding of SYBR Green� to double-stranded DNA
allowed for detection of both amplicon and off-target
products during the thermal cycling process (82,83).
These experiments were set-up in quadruplicate, using
the same set-up as the endpoint experiments, with the
exception that 40 thermal cycles were performed. When
unmodified primers were employed (Figure 9A and D), all
four input template concentrations were detected in real-
time, with Cts (threshold cycles) ranging from 20 to 23
calculated from the sigmoidal amplification plots.
However, reactions containing no template (NTC) had a
significant Ct of 28.3. The corresponding dissociation
curves demonstrated amplicon formation for reactions
containing template (878C) and primer dimer formation
for reactions performed in the absence of template (818C).
When single OXP-modified primers were employed
(Figure 9B and E), all four templates were detected with
similar efficiency to the unmodified primers. The NTC
reactions had a marked reduction in primer dimer forma-
tion, which was evidenced by a much delayed Ct of 36.7.
The dissociation curves revealed clean amplicon formation
for all plus-template reactions (878C) and much reduced
primer dimer formation. When double OXP-modified pri-
mers were evaluated (Figure 9C and F), all four plus-tem-
plate reactions displayed robust amplification plots, with a
slight delay in Ct relative to the unmodified and single
OXP-modified primers. One notable occurrence was that
the double OXP-modified primers had no measurable Ct
for the NTC reactions and gave very slight indication of
primer dimer formation (melting temperature of 798C in
the dissociation curve).

When the performance of the three different types of
primer was evaluated by plotting the Ct values versus a
known amount of input template in a standard curve
(Figure 9G), each displayed good linearity over the high
end of the template concentration range (5–125 copies). On
the lower end of the template concentration range, the Ct
values deviated from linearity, with earlier Ct values than
those expected from extrapolation of the trend line.
Presumably, the earlier Ct for these reactions is due to
the detection of both primer dimer and amplicon forma-
tion, as primer dimers form most efficiently when the DNA
template is limiting (as seen for Figure 7). For each of the
OXP-modified primers, the lowest copy number amplifica-
tions were closer to linearity than the corresponding
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Figure 8. Comparison of the performance of OXP-modified primers to
other Hot Start DNA polymerases. (A) Agarose gel analysis of the
PCR products resulting from the 35 thermal cycles of amplification
of five copies of a 365-bp fragment from the HIV-1 tat gene using
0.5 mM unmodified, single OXP-modified and double OXP-modified
primers. Reactions containing unmodified primers were amplified by
Taq DNA polymerase, Platinum� Taq DNA Polymerase, AmpliTaq
Gold� DNA Polymerase, HotStart-ITTM Taq DNA Polymerase
and DyNazymeTM II Hot Start DNA Polymerase. Reactions contain-
ing single and double OXP-modified primers were amplified by Taq
DNA polymerase. (B) Graphical representation of PCR amplicon
yield. The results from triplicate experiments were averaged and are
normalized to the yield of reactions containing single OXP-modified
primers plus Taq DNA polymerase. Error bars represent the SD.
(�), indicates Hot Start DNA polymerases.
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Figure 9. Real-time PCR analysis of the formation of a 365-bp amplicon of the HIV-1 tat gene using detection by SYBR Green� I nucleic acid stain.
Reactions, which contained 10 ng of human genomic DNA and 0, 1, 5, 25 or 125 copies of HIV recombinant DNA as calibrated from the Gene
Amplimer kit, were performed in quadruplicate and employed 0.5 mM unmodified, single OXP-modified and double OXP-modified primers.
This figure displays amplification plots: (A) unmodified primers; (B) single OXP-modified primers; and (C) double OXP-modified primers; dissocia-
tion curves: (D) unmodified primers; (E) single OXP-modified primers; and (F) double OXP-modified and a standard curve (G).
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unmodified primers as determined by the R2-value of the
curve fit. The linearity and lower efficiency values are indi-
cative of the improved specificity of amplicon formation.
Although the Cts were delayed for both the single and
double OXP-modified primers, they were all within one
Ct of one another and will result in no significant delay
in data acquisition. More importantly, the improved qual-
ity of the data generated with the modified primers suggests
that implementation of OXP-modified primers will allow
for better estimation of copy numbers in unknown samples
by significantly reducing false positives.

Evaluation of thermolabile primer modifications in a
primer/template system that is prone to mis-priming

Mis-priming is the result of unintended primer binding
to one or more off-target regions of a DNA template
resulting in spurious amplification (14). These off-target
amplification products are problematic, as they reduce
the efficiency of formation of the amplicon of interest by
competing for key components within the reaction
[namely, primer, DNA polymerase and deoxyribonucleo-
tide 50-triphosphates (dNTPs)], and may give rise to false
positives, depending on the method of detection. In these
studies, a problematic primer/template system, which is
targeted to a 653-bp fragment of the �-actin gene from
human genomic DNA, was selected for evaluation.
When this target is amplified using unmodified primers,
multiple bands were formed, with sizes ranging from
150 bp to >1000 bp (80). An initial evaluation of unmodi-
fied, single OXP-modified and double OXP-modified
primers revealed that the presence of two OXP PTE
primer modifications provided the greatest benefit in
improving the specificity of amplification (Supplementary
Figure S2). Further investigations were performed by
comparing the performance of unmodified and double
OXP-modified primers in PCR, using endpoint analysis
as a measure of reaction performance. In these studies,
input amounts of genomic DNA ranging from 0
to 100 ng were evaluated (Figure 10). When unmodified
primers were utilized, reactions employing 0.1 ng of tem-
plate displayed low efficiency and the highest degree of
nonspecificity, with at least 12 additional off-target ampli-
fication products evident by agarose gel analysis. As the
amount of input template was increased, so did the for-
mation of the desired amplicon. However, high levels of
off-target amplification products still formed, and the
amplification products ran as smears on the gel. In con-
trast, when the double OXP-modified primers were tested,
the 653-bp amplicon formed with much higher specificity
for all template concentrations, without the smearing that
was observed for reactions containing the unmodified pri-
mers. Although off-target amplicon was not entirely sup-
pressed, this significant improvement will be beneficial for
use in downstream applications, such as cloning and
sequencing.

Evaluation of thermolabile primer modifications
for improved detection of a low copy number target

PCR-based detection of low copy number samples can be
compromised by competing amplification of nontarget

sequences, which can have a significant effect on the speci-
ficity and sensitivity of detection. A 533-bp fragment of the
DNA packaging protein of enterobacteria phage � was
selected for evaluation as it is prone to off-target amplifica-
tions, especially for low amounts of input genomic DNA.
Using real-time TaqMan� probe detection, unmodified
and double OXP-modified primers were compared for
their ability to amplify 0–10 000 copies of input genomic
DNA (see Supplementary Figure S3 for performance of
single OXP-modified primers). When unmodified primers
were employed (Figure 11A), reactions containing between
100 and 10 000 copies of � genomic DNA showed robust
detection of amplicon formation. However, amplicon for-
mation for reactions containing 50 copies was barely
detectable in 40 cycles. Furthermore, the amplification
curve was low in amplitude and indicative of low amplifica-
tion efficiency (84). When primers containing two OXP
modifications were employed (Figure 11B), amplification
products were detected for all seven amounts of input tem-
plate, including 10 copies. In addition, the amplification
plots displayed much higher fluorescence amplitudes and
were indicative of a much more efficient reaction. When the
results from these studies were plotted in a standard curve
(Figure 11C), the data from the double OXP-modified
primers followed a linear trend for all template concentra-
tions examined. In contrast, the unmodified primers
displayed a linear trend between 100 and 10 000 copies,
with the 50 copy sample significantly deviating from the
line and the 10 copy sample being undetectable over the
course of the experiment. At the higher template concen-
trations, both unmodified and double OXP-modified prim-
ers detected the amplicon with similar efficiency (as
determined by Ct values). However, the poor detection of
amplicon for the lower copy number samples with the
unmodified primers is likely due to predominating amplifi-
cation of off-target regions of the template. These findings
indicate the promise of primers with thermolabile PTE
modifications for improving the lower limit of detection
of difficult primer/template targets.
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Evaluation of thermolabile primer modifications in
one-step RT–PCR

Modified PCR primers were evaluated as a potential
improvement to a one-step RT–PCR approach as they
are not expected to be extendable during the cDNA

synthesis step, thereby reducing the probability of off-
target amplicon formation. Human ABCA1, PBGD and
�-actin genes were arbitrarily selected as representative
RNA targets to investigate the potential benefit of PCR
primers with thermolabile PTE modifications in one-step
RT–PCR (79,80). In this approach, the unmodified poly-
dT18 primer, a pair of PCR primers, MMLV RT and Taq
DNA polymerase were included in a single reaction tube.
The relative performance of unmodified, single
OXP-modified and double OXP modified PCR primers
was evaluated in one-step RT–PCR using a poly-dT18

primer for cDNA synthesis (Figure 12). For PBGD, use
of unmodified PCR primers resulted in formation of sev-
eral nonspecific amplicons, with the desired amplicon
(264 bp) being formed at low efficiency. For ABCA1, two
amplicons of equal efficiency were formed when unmodi-
fied PCR primers were employed, where one was the
desired 205-bp amplicon. For both targets, amplicon for-
mation was enriched when single OXP-modified PCR
primers were employed, with further improvement using
double OXP-modified primers. For �-actin, no detectable
amplicon was formed with unmodified PCR primers.
However, the desired 446-bp amplicon was formed with
high specificity using either single OXP-modified or
double OXP-modified primers. Overall, substitution
of OXP-modified primers for corresponding unmodified
primers was found to significantly improve the specificity
of one-step RT–PCR. The double OXP-modified primers,
which underwent slower conversion to the corresponding
unmodified primers, enhanced highly specific amplicon
formation in all cases.
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DISCUSSION

Hot Start PCR has proven an invaluable tool to amplify
DNA targets by decreasing nonspecific target amplifica-
tion. Commercially available Hot Start methodologies rely
on specialized DNA polymerase compositions, such as
chemical modifications, antibodies or other accessory pro-
teins which block DNA polymerase activity at lower tem-
peratures (18–27). The described approach investigates the
introduction of modification groups onto one of the other
key PCR components, the PCR primer. The described
OXP and MAF PTE modifications were easily introduced
via a modified phosphoramidite reagent using conven-
tional solid phase oligonucleotide synthesis.
In proof of principle experiments, the presence of one to

two internucleotide PTE modifications at the 30-end of a
primer was found to block DNA polymerase primer exten-
sion at lower, less stringent temperatures, while allowing
for facile conversion to the corresponding unmodified
primer using a Hot Start activation step. PTE-modified
primers were not extendable by DNA polymerase prior
to Hot Start activation. This property ensures that primer
extension will not occur during the nonstringent pre-PCR
conditions of sample preparation and manipulation.
Furthermore, the PTE group is efficiently removed at strin-
gent hybridization conditions by a thermal treatment step.
Hot Start activation promotes release of the corresponding
unmodified PDE oligonucleotide, which is extendable by
the DNA polymerase, thus allowing for utilization of PTE-
modified primers in PCR. Notably, no other reagents or
special PCR conditions are necessary to activate the PTE
primers.
Detailed kinetic investigation of the conversion of single

OXP-modified primers agrees with the intramolecular
fragmentation mechanism postulated by Beaucage and
coworkers (74). Although water is not directly involved
in the proposed mechanism of OXP group deprotection,
our preliminary data demonstrated that anhydrous storage
conditions further improved stability of the OXP primers,
and may reflect the influence of solvent polarity (i.e. dielec-
tric constant) on the rate of deprotection. While our initial
expectation for optimal Hot Start activation of PTE-mod-
ified primer was t½ �2min, the actual experiments have
shown that a single OXP modification with a longer t½
conversion of 8.5min provided improved PCR perfor-
mance and is comparable with typical Hot Start activation
conditions for Hot Start enzymes [958C, 2–15min (24)].
The success of PCR with longer t½ for activation is sup-
ported by our calculations (see Materials and Methods
section), which predict that incubation of a single OXP-
modified primer pair at 958C for 1min should generate
enough unmodified PDE primer molecules to support
PCR amplification for �30 cycles. After 30 PCR thermal
cycles, it was estimated that the concentration of PDE
primer molecules would still be adequate to support PCR
amplification up to cycle 35. We have also investigated
faster PTE deprotecting oligonucleotides with groups,
such as TBCA and MTB (72,75). They were examined
but failed to maintain stability during preparation and iso-
lation of the PTE oligonucleotides (see Supplementary
Data). Primers containing the slower deprotecting MAF

group showed improvement over PDE primers. However,
MAF-modified primers were less efficient in PCR amplifi-
cation and showed more primer dimer formation as com-
pared to OXP-modified primers.

Overall, the studies herein reveal a significant benefit to
the substitution of OXP-modified primers for the corre-
sponding unmodified PDE primers. In problematic
primer/template systems that are prone to primer dimer
formation, a marked improvement in PCR performance
was evident by employing single OXP-modified primers,
which significantly reduced off-target amplifications.
Further benefit was evident with double OXP-modified
primers, as off-target amplification products became vir-
tually undetectable. These findings were evident in
endpoint PCR analysis, as a gel-image after 35 thermal
cycles revealed enrichment of the desired amplicon, with
little to no primer dimer formation. Further endpoint
experiments demonstrated that the presence of OXP
primer modifications provided comparable if not
improved PCR performance relative to other Hot Start
technologies.

When PCR amplifications were monitored using real-
time detection, the presence of OXP primer modifications
greatly improved reaction performance by significantly
delaying the Ct for off-target products and by allowing
for improved linearity for all template concentrations
employed. In the presence of template, the subtle delays
in Ct that were observed for the modified primers may be
indicative of the limiting rate of unmodified primer for-
mation during PCR. Furthermore, these slight delays in
Ct may be indicative of the presence of unextendable
OXP-modified primer complexes with the DNA polymer-
ase that dominate the early stages of PCR. However, the
rate of release of the OXP modification did not signifi-
cantly affect PCR performance. Although both OXP-
modified PCR primers were found to benefit a number
of problematic primer/template systems, the rate of unmo-
dified PDE primer formation may complicate more
advanced PCR applications, such as those that employ
fast thermal cycling conditions. However, recent fast
cycling work indicates that higher primer concentrations
can compensate for the slower release of the OXP mod-
ification to the corresponding unmodified primers.

When the aforementioned PTE-modified primers were
evaluated for their ability to support the amplification of
targets that were prone to mis-priming or were limited by
the sensitivity of detection, the slower converting double
OXP-modified primers provided the greatest benefit.
These findings are indicative of three plausible mechan-
isms, which may contribute to the observed improvement
in PCR specificity and efficiency. First, should off-target
amplicons form by primer hybridization and extension
during sample set-up and consequently predominate the
amplification reaction, then the presence of two modifica-
tions should block DNA polymerase extension by main-
taining their protecting groups until the Hot Start,
elevated temperatures are reached. Second, since PTE-
modified oligonucleotides form duplexes of weaker stabil-
ity than the corresponding PDE oligonucleotides (85–87),
it is anticipated that the presence of PTE modifications
may further disrupt the formation of extendable duplexes
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at the less discriminating temperatures of reaction set-up.
Furthermore, the presence of diastereomeric mixtures at
each PTE modification will further disrupt complex for-
mation by further weakening duplex stability relative to
PDE oligonucleotides (85–87). Third, should the off-target
amplicons form during the thermal cycling process, then
the limiting, temperature-dependent release of unmodified
primer into the reaction should increase the probability of
the primers annealing to regions of high complementarity.
Regardless of the mechanism of the action of
OXP-modified primers, the combination of poor extension
and hybridization at low temperatures and the delayed
release of unmodified primer at elevated temperatures
were found to provide a significant improvement in PCR
performance.

Primers with thermolabile PTE-modification groups
were also found to allow selective primer usage in sequen-
tial enzymatic reactions, such as one-step RT–PCR.
Although one-step RT–PCR protocols provide a more
streamlined, high-throughput technique that reduces the
probability of contamination by minimizing the number
of handling steps (88), the technique has inherent prob-
lems and has often been found to be less sensitive than
two-step (89,90). One likely cause for this lack of sensitiv-
ity is competing extension of PCR primers by reverse tran-
scriptase (91) or DNA polymerase (14). At lower, less
discriminatory temperatures of RT (428C), PCR primer
extension may result in off-target amplification products
such as primer dimer and mis-priming products. PCR
primers containing PTE modifications displayed dimin-
ished ability to extend during pre-PCR steps, allowing
for predominant elongation of the unmodified RT
primer during RT, with concomitant reduction in lower
temperature, nonspecific amplicon formation. These prop-
erties allowed for improved specificity in amplicon forma-
tion, with the double OXP-modified primers revealing the
greatest overall benefit.

While the current studies have described the benefit of
PTE-modified primers in more traditional PCR-based
applications, it is anticipated that this technology may
provide benefit to more advanced applications. The prom-
ise of modified primers in one-step RT–PCR is an impor-
tant finding which may benefit in a number of downstream
applications where a low-temperature enzymatic step pre-
cedes an amplification step. Further advancements are
envisioned for low copy number amplification reactions
in which competing primer dimer formation may compli-
cate analysis (9,92,93). Another promising area of
exploration for this modified primer technology is in mul-
tiplex PCR (5,27,94). In this technology, multiple primer
pairs targeted to different locations along the DNA tem-
plate are introduced into a single reaction. The diversity of
the primer sequences and the overall higher concentration
of primer molecules in the mixture lend the reactions to a
high potential for off-target amplicon formation, such as
primer dimer. By employing primers with thermolabile
modification groups, primer extension should be signifi-
cantly suppressed during the less stringent sample pre-
paration steps, thereby providing abundant primer for
extension during the thermal cycling steps.

CONCLUSIONS

In the years since the introduction of PCR, a variety of
alternate Hot Start technologies have been developed to
mitigate the problems of PCR. The primary objective of
our research was to develop a general strategy to address
PCR specificity problems by the use of modified primers.
Our approach was based on a chemical modification of
the primer where the OXP modification group is incorpo-
rated into the primer during the oligonucleotide synthesis.
The extension of OXP-modified primers is suppressed
until the OXP group is released under desired high strin-
gency conditions. This technology works with many ther-
mostable DNA polymerases including commonly used
Taq and does not require the use of Hot Start enzymes.
However, while this approach has been shown to be a
completely independent alternative Hot Start method, it
potentially may provide synergistic advantages when used
in conjunction with alternative Hot Start technologies.
Overall, the described modified primer technology (95)
represents an orthogonal approach to Hot Start activation
in PCR, which may provide alterative benefits to PCR
that have not been possible with current Hot Start DNA
polymerase-based approaches.
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